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A B S T R A C T   

This study examines the efficacy of various neural network (NN) models in interpreting mental constructs via 
electroencephalogram (EEG) signals. Through the assessment of 16 prevalent NN models and their variants 
across four brain-computer interface (BCI) paradigms, we gauged their information representation capability. 
Rooted in comprehensive literature review findings, we proposed EEGNeX, a novel, purely ConvNet-based ar
chitecture. We pitted it against both existing cutting-edge strategies and the Mother of All BCI Benchmarks 
(MOABB) involving 11 distinct EEG motor imagination (MI) classification tasks and revealed that EEGNeX 
surpasses other state-of-the-art methods. Notably, it shows up to 2.1%–8.5% improvement in the classification 
accuracy in different scenarios with statistical significance (p < 0.05) compared to its competitors. This study not 
only provides deeper insights into designing efficient NN models for EEG data but also lays groundwork for 
future explorations into the relationship between bioelectric brain signals and NN architectures. For the benefit 
of broader scientific collaboration, we have made all benchmark models, including EEGNeX, publicly available at 
(https://github.com/chenxiachan/EEGNeX).   

1. Introduction 

Brain-Computer Interface (BCI) research aims to elucidate commu
nication pathways between the brain and machines [1]. From an in
formation theory perspective, modern machine learning models, 
particularly Neural Networks (NNs) [2], are evolving to increasingly 
resemble the human brain’s ability to process, store and communicate 
information-laden input/output data [3]. Given this context, recent 
research has leveraged NNs in the BCI domain for information extrac
tion. Among all neuroimaging methods, electroencephalography (EEG) 
is most commonly used in BCI to its non-invasive nature, low risk, and 
affordability [4]. NNs excel in receiving and processing EEG signals, 
which carry implicit information about brain activities, without prior 
knowledge, thereby contributing to our understanding of the human 
brain. 

As multi-channel time-series data, EEG signals carry implicit infor
mation of brain activities. The decoding and representation of these 
signals are crucial in EEG data processing. In this regard, we observe that 
two primary types of NNs are adopted in the EEG community: Recurrent 
Neural Networks [5,6] (RNNs), primarily referring to Long Short-Term 

Memory, LSTM [7] and Gated Recurrent Unit, GRU [8], which are 
effective in uncovering the hidden state correlations from sequential 
data, and Convolutional Neural Networks (Conv. or CNNs) [9–11], 
which are proficient at extracting information from spatial correlations. 

Despite established research demonstrating the performance ad
vantages of various NN designs in decoding EEG signals through implicit 
information extraction and end-to-end representation learning [6,12], a 
research gap persists: Most studies focus primarily on boosting classifi
cation accuracy on a specific dataset or task type. This is typically 
achieved through manual, explicit feature extraction via domain 
knowledge preprocessing [6], regularization [13], and transformation 
techniques [10,14], along with fine-tuned hyperparameters. As a result, 
understanding the generalization performance of representation 
learning abilities across different NNs becomes challenging. This study 
addresses this issue by examining the performance of previous ap
proaches under the same conditions to guide further improvement. In 
other words, we seek to answer the key question: 

- To what extent do various neural network designs contribute to the effi
cient representation learning of raw EEG data? 
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To address this question, we make contributions in this study in 
three-fold: 

1. Thorough Evaluation of NN Performance: We thoroughly evalu
ated the performance of 16 different fundamental NNs models in four 
EEG-based BCI classification tasks. The results revealed the efficacy 
of different NNs in representing EEG-based information and pro
vided insights into designing efficient NN models for EEG-based 
classification tasks.  

2. Development of a Novel NN Architecture: Based on the literature 
review, benchmark test results and successful key component 
implementation of advanced NNs, we provide a trajectory from an 
advanced NN architecture, EEGNet, to EEGNeX. We intensively 
reinforce the model’s spatial, temporal, and cross-channel global 
representation learning efficacy. Compared to typical algorithm 
pipelines evaluated in Mother of All BCI Benchmarks (MOABB) [15], 
EEGNeX shows higher accuracy with statistical significance on 11 
diverse EEG motor imagination (MI) datasets.  

3. Open-Source Testbed for Research: We open-source all models and 
EEGNeX to provide a testbed for research and to reduce the diffi
culties of NN implementation in the BCI domain. 

The remainder of this paper is organized as follows: Section 2 re
views the development of neural networks in the domain. The design of 
benchmark models, target dataset selection, training strategy, and 
benchmark insights are described in Section 3, followed by an analysis 
with a proposal of serial structural innovations based on EEGNet with a 
comprehensive architecture description of EEGNeX (Section 4). The 
accuracy novelty of EEGNeX is validated in Section 5 with the discussion 
of the future direction in Section 6. Section 7 concludes the study. Fig. 1 
illustratively summarizes the objective of this study. 

2. Literature review: Development of NNs in EEG-based 
classification tasks 

This section provides a concise review of two types of Neural 
Network (NN) adaptations and their evolution in EEG-based BCI clas
sification tasks, alongside a parallel comparison of NN development in 
their original domains. 

The first well-known NN adaptation in EEG classification was Con
vNet [16]. It consists of two convolutional layers for extracting temporal 
and spatial features, followed by dense layers, and applied to a P300 
task. A similar CNN-based approach supplemented with max-pooling 
layers [17] showed improved performance compared to a well-known, 
domain-knowledge-based algorithm - filterbank common spatial pat
terns (FBCSP) [18]. EEGNet builds upon previous methods and com
bines depthwise convolution with separable convolution [11] to 
enhance cross-channel spatial feature extraction. The integration of a 
dropout layer, batch normalization layers, kernel constraint, and max- 
pooling stride made EEGNet more efficient in terms of parameters use 
and cross-section performance compared to ShallowConvNet (two 

convolution layers) and DeepConvNet (five convolution layers). 
Several extended EEGNet variants incorporating domain knowledge 

have been proposed, including EEG-inception [19], which uses multi- 
head convolutions as an inception block with different kernel sizes 
(receptive fields) and pointwise convolution; FBCNet [20], which pre
sents a hybrid approach combining bandpass filtering and different 
narrow filter banks to improve performance on MI tasks; EEG-TCNet 
[21], which adds a temporal convolutional network (TCN) [22] to 
strengthen the temporal feature extraction; and EEG-ITNet [23], which 
combines the inception block and TC block, and claimed accuracy 
advance. 

In terms of RNN-based models, less attention has been dedicated to 
their application in EEG-based classification tasks [6]. A two-layer LSTM 
implementation has been utilized for emotion recognition and proven to 
outperform statistical-based feature selection methods with traditional 
machine learning classifiers [24]. Similarly, LSTM implementations 
with feature extractors in MI tasks have reported superior performance 
compared to conventional methods and other deep networks, including 
CNNs [25]. Another RNN variant, GRUs, has been coupled with the 
attention mechanism [26] and applied in emotion classification tasks 
[27]. This model outperforms both CNNs and LSTMs. Subsequently, a 
structure combining CNNs and LSTMs was proposed for the same task, 
offering faster training times. In this structure, CNNs handle the spatial 
information from EEG signals, while RNNs extract the temporal infor
mation [28]. 

Originally, CNNs and RNNs were primarily developed as traditional 
models for tasks in different domains, such as speech recognition (Nat
ural Language Processing, NLP, temporal) and computer vision (CV, 
spatial), respectively. The intersection between these two models 
emerged with the introduction of the attention-based RNN Transformer, 
BERT [29], proposed for language translation, and ViT [30] for image 
recognition. Although ViT outperforms traditional CNN architectures 
such as VGGNet [31], ResNet [32], and EfficientNet [33], the advan
tages of such hybrid NN architectures continue to be a topic of ongoing 
discussion: for instance, ConvNeXt [34] fine-tuned the ResNet archi
tecture to further improve accuracy and scalability, reaching the level of 
Transformers while preserving the simplicity and efficiency of standard 
convolution networks. Given that BCI seeks to interpret implicit infor
mation from brain activities, requiring both temporal and spatial 
decoding, it is crucial to explore the information representation pro
cesses for different NNs, learning from their development trajectory and 
adapting to the BCI domain. 

3. Preliminary study: Benchmark test 

This section adopts a reductionist approach, starting with a bench
mark test. Its objective is to investigate the performance of various 
fundamental NN layer types and their derivatives in the extraction of 
implicit information. The goal is to attain a quantitative comprehension 
of the principal NN types and garner insights into designing more effi
cient networks for EEG-based classification tasks. 

Fig. 1. Overall visualization of the research pipeline; We implement different NN architects into variate EEG-based, BCI classification tasks in open-source. Based on 
the benchmark results, we aim to alleviate the difficulty of finding the path to adapt NNs efficiently toward higher accuracy in the domain. EEGNeX, a novel NN 
structure is proposed with validation in this study. 
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3.1. Candidate methods 

We focus on implementing performance comparison among two 
main types of NN structures: CNNs and RNNs, with their variations and 
combinations. Four basic layer types and their variations in TensorFlow 
[35] were chosen for investigation: 2D convolution layer (Conv2D), 1D 
convolution layer (Conv1D), LSTM layer, GRU layer, and their 
combinations. 

Moreover, several trending CNN variations whose mechanisms 
might affect the representation learning ability of NNs are chosen, 
including:  

• Depthwise separable convolutions [36]: consist of first performing 
a depthwise spatial convolution (which acts on each input channel 
separately) followed by a pointwise convolution that mixes the 
resulting output channels.  

• Causal padding: initially designed in WaveNet [37] for sequential 
sound generation, as an implementation option in the CNN layer. It 
pads the layer’s input with zeros in the front so values of early time 
steps can be predicted. 

• Dilation: add the convolution layer with spaces in-between to sup
port the exponential expansion of the receptive field without loss of 
resolution or coverage. It aggregates multi-scale contextual infor
mation and is firstly proposed for image semantic segmentation [38]. 

Following the throughout reviews of EEG-based BCI classification 
tasks [6,12], we reproduced common networks and adopted well- 
proved regulation procedures in corresponding NNs:  

• Using kernel regularizers in RNNs.  
• Using a CNN layer and batch normalization [39] with e exponential 

linear unit (ELU) activation function [40] as a standard CNN 
component. 

• Adding average/max pooling layers at the final layer of CNN to ac
count for local translation invariance. 

A reproduction of EEGNet is integrated into the benchmark. In this 
study, we chose EEGNet-8,2, because of its better performance than 
EEGNet-4,2 (8 and 4 stand for different filter numbers of the first 
convolution layer in EEGNet), based on results from the original paper 
[11]. In this study, 16 NNs are chosen as candidates for the benchmark. 
Their macro design and detailed architectures of all NN candidates are 
available in Appendix, tables 6–10. 

3.2. Datasets 

To conduct a comprehensive and in-depth investigation of EEG 
representation learning and implicit information extraction capabilities 
on different NNs, we tested on four diverse EEG datasets with the 
consideration of covering within/cross-subjects, different tasks, para
digms, trial lengths, data sizes, and channels number. A characteristic 
overview of all datasets is presented in Table 1, detailed descriptions and 
preprocessing procedures is available in Appendix. 

Particularly, two out of four chosen datasets (SMR and ERN) are the 
same as in the original EEGNet study [11] for comparative evaluation. 
The SMR dataset is also used in the performance evaluation of EEG- 
inception, EEG-TCNet and EEG-ITNet studies. The evaluation was con
ducted within-subject, as this minimizes the effect of non-stationarity. It 
is worth mentioning that some datasets in MOABB have small sample 
sets of data within-session, which increases the difficulties of training 
NN algorithms. The accuracy metric scores are determined using 5-fold 
cross-validation to validate the general information extraction and 
representation performance. 

Table 1 
Description of experiment dataset collections. Class imbalance, if present, is given as odds, means different classes have uneven odds, which is given as the average class 
imbalance over all subjects.  

Paradigm Dataset Subjects Trials Classes Channels Class Imbalance? Size 

ERP MNIST of BRAIN DIGITS (MBD) 1 224 10 14 No (64302, 14, 224) 
MI OpenMBI Data (MBI) 54 200 2 20 No (10800, 20, 512) 
SMR BCIC-IV-2A Data (SMR) 9 500 4 22 No (2592, 22, 500) 
ERN Feedback Error-Related Negativity (ERN) 26 160 2 56 Yes, ~3.4:1 (5440, 56, 160)  

Table 2 
Performance result of exhaustive evaluation on four datasets across all candidate models. The average accuracy and deviation are calculated based on ten rounds of the 
train-validation process with random seeds in the data split. In addition, model parameter sizes are presented along to represent the network complexity and search 
space size. To validate our implemented EEGNet performance, the Tensorflow version2 of EEGNet (with mark *) is included in the benchmark.  

Dataset MBD MBI SMR ERN 

Model Name Accuracy Deviation Accuracy Deviation Accuracy Deviation Accuracy Deviation 

Single_LSTM 13.31 0.49 53.78 0.79 27.38 2.59 71.43 0.53 
Single_GRU 14.49 0.49 53.80 1.81 27.25 2.66 71.01 0.42 
Conv1D 15.45 0.42 68.22 0.72 30.80 2.23 71.03 0.85 
Conv1D_Dilated 15.11 0.28 69.87 0.69 31.64 3.06 70.31 0.74 
Conv1D_Causal 15.11 0.44 67.71 0.96 30.62 2.91 69.31 0.35 
Conv1D_CausalDilated 15.44 0.29 67.91 0.68 30.49 1.64 69.47 0.57 
Conv2D 15.20 0.38 67.09 0.40 32.99 1.75 69.65 0.12 
Conv2D_Dilated 15.15 0.29 68.76 0.81 33.46 1.96 68.88 0.28 
Conv2D_Separable 16.26 0.45 68.67 0.90 34.72 3.13 72.26 0.10 
Conv2D_Depthwise 16.20 0.28 68.90 0.75 36.51 2.27 71.54 0.43 
Conv_LSTM2D 16.18 0.34 69.74 0.73 36.61 1.91 71.13 0.11 
Conv_GRU2D 16.14 0.32 68.25 0.77 36.70 1.94 70.95 0.16 
Conv_LSTM1D 15.77 0.34 69.57 0.80 30.77 1.63 69.90 0.42 
Conv_GRU1D 15.75 0.31 67.48 0.80 29.41 1.68 71.85 0.19 
EEGNet-8,2 16.69 0.29 70.81 0.91 56.79 2.06 72.13 0.37 
EEGNet-8,2* 16.53 0.31 70.19 0.98 57.14 1.99 71.45 0.34  

2 https://github.com/vlawhern/arl-eegmodels. 
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3.3. Training strategy 

All datasets are grouped according to events (records of all channels 
for one event) and tested with candidate models for ten rounds under the 
same train/validation/test ratio of 0.75/0.125/0.125 (training data size 
equivalent to a 4-fold cross-validation test) with random split seeds each 
round. As the sign-to-noise ratio of EEG signals is relatively low, NNs 
must avoid memorizing the noise components from EEG signals to end 
up overfitting the dataset. 

To ensure that different modeling structures present their best per
formance, we train the model in a self-monitor behavior for each dataset 
to exclude the potential impact of different feature engineering pro
cesses or data size on the model performance. All candidate methods 
were run under the same two-stage scheme:  

1. The training set is processed under a batch size of 128 for each epoch 
with a default learning rate of 0.001. The accuracy of the trained 
model is monitored on the validation set, and the learning rate is 
reduced by half if accuracy stops improving for five epochs. The 
training process stops when there is no improvement in the valida
tion set for 20 epochs to prevent overfitting.  

2. The model performance is evaluated by running on the test set to 
avoid data leakage and represent the performance of all benchmark 
models in the real-world production environment. 

3.4. Performance evaluation and insights 

Table 2 presents the performance result of exhaustive evaluation on 
four datasets across all candidate models. 

According to the accuracy results across four datasets, some primi
tive findings regarding different NN architectures’ performance are 
collected and categorized in three aspects:  

1. Sequential processing methods such as Recurrent Neural Networks 
(RNNs) and one-dimensional Convolutional Neural Networks 
(Conv1D) with a causal structure do not effectively extract and 
represent implicit EEG information. No significant performance dif
ferences were observed between Long Short-Term Memory (LSTM) 
and Gated Recurrent Unit (GRU) models. CNN-based models on 
average outperformed RNNs in classification accuracy. Since all EEG 
datasets comprise three-dimensional, multi-channel time-series data 
(sample, channels, time/trials), the extraction of cross-channel 
spatial information (in the channel dimension) is more efficient 
than the extraction of temporal information (in the trial/time 
dimension).  

2. Within the fundamental structure of CNNs, two-dimensional 
convolution (Conv2D) generally achieved higher accuracy than 
Conv1D, as it does not need the compression of multi-channel EEG 
signals into a sequential format and it learns patterns across chan
nels. Among the various variations, the separable 2D convolution 
architecture shows the best ability for learning temporal summaries 
[11]. The stability of accuracy improves when depthwise-separable 
2D convolution is combined with EEGNet, with the key factor 
being the mechanism of depthwise convolution that supports 
efficient cross-channel spatial feature learning.  

3. The performance of hybrid model structures (CNN-LSTM, CNN-GRU) 
exhibited considerable accuracy improvements compared to any 
single original model. Notably, the results of hybrid models with 
Conv1D layers in all datasets were less accurate than those consisting 
of three stacked layers of Conv2D (see Appendix). This suggests that 
extracting additional temporal information after appropriate 
spatial filter/learning is beneficial for further improving model 
performance. 

In light of our experimental results and literature review findings, we 
identify four key areas that contribute to the design of NN architecture 

for efficient EEG-based BCI classification tasks: spatial filtering, spatial 
(cross-channel) feature learning ability, temporal feature learning abil
ity, and model parameter space with performance stability. We found 
that similar existing NNs all benefited in performance improvement by 
strengthening at least one pillar. Fig. 2 presents these key pillars and 
corresponding NN designs. 

4. Roadmap: From EEGNet to EEGNeX 

In the previous experiment, EEGNet presents the best performance 
among all candidate models, as: 1) The first part – the 2D convolution 
layer extracts the spectral representation of EEG input; 2) The second 
part – the kernel size of depthwise 2D convolution is tailored to the 
number of channels and directed to perform convolutions across chan
nels. 3) The third part – separable 2D convolution conducted as infor
mation extraction and learning. By revisiting the three parts mentioned 
above and adapting to modern network component designs, we can 
modify the EEGNet toward higher general performance. 

In this section, we provide a trajectory from EEGNet to EEGNeX, 
incorporating findings from the previous section as well as key compo
nent implementations from ConvNeXt [34]. The roadmap starts from a 
standard EEGNet and progresses with adjustments to the network ar
chitecture in different parts. Sequentially, we test changes at the micro- 
level within the fixed network structure. We set the EEGNet as the 
backbone and tracked the successful steps tested on datasets described in 
Section 3 with proven performance improvement by ten rounds of 
validation. 

The summarized roadmap is as follows four-steps: 1) Reinforce the 
spatial representation extraction from EEG input, 2) Replace the sepa
rable convolution with two 2D convolutions in the general architecture, 
3) Inverse bottleneck structure, 4) Increase the receptive field of the 
layers with dilation and fewer activations. The modification purposes 
and detailed procedure with the results of each step are described as 
follows. The quantitative results are presented in Fig. 3. 

Step 1. Thicken the first part of spatial information extraction. 

Based on the study from Section 2, we noticed that the current 
structure of EEGNet is designed in three parts with the particular pur
pose of information processing. The first part that aims to extract 
spectral information from the EEG input and is shallow, with only one 
Conv2D block with a kernel size of 32 and output filters of 8. Based on 
the previous study [17] and considering that the general network layer 
depth should not be too deep, we duplicate one more Conv2D block in 

Fig. 2. Network architecture design pillars for efficient EEG-based BCI classi
fication tasks with proven models. 
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the first part. It is worth mentioning that the adjustment we made is the 
most intuitive solution. The key idea is to strengthen the network spatial 
information extraction ability, and a more optimal design in this part is 
likely to exist (see Fig. 2). 

Step 2. Replace the separable convolution with two 2D 
convolutions. 

This step focuses on the second part of the model, which consists of a 
combination of a depthwise and a separable convolution. Depthwise 
convolutions, initially proposed for efficient parameter usage in large 

Fig. 4. EEGNeX architecture; (a) the general structure visualization of EEGNeX-8,32. An EEGNeX is composed of five units. 8 means the number of temporal filters, 
while 32 stands for the kernel size; (b) The structure of the unit, which consists of a convolution layer, a BatchNormalization layer, and an ELU activation layer; (c) 
The illustrative process of depthwise Convolution. In EEGNeX, it acts as a frequency spatial learner/filter. (d) Visualization of dilation mechanism: the kernel scans 
the convolution layer with spaces in-between to increase the kernel receptive field. 

Fig. 3. The roadmap of modifying from EEGNet − 8,2 toward EEGNeX − 8,32. The bars record the ten times average performance of the model at each step. The 
black horizontal lines represent the deviation to reflect model performance stability. In the end, the pure convolution-based network structure, namely EEGNeX, 
outperforms the EEGNet – 8,2 on all datasets. 
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image datasets training [41], have two main advantages: 1) Its built-in 
mechanism acts as a cross-channel, frequency spatial learner (as 
shown in Fig. 4, subfigure c), improving the global information extrac
tion abilities, especially in multi-channel EEG datasets. 2) They reduce 
network parameters and complexity. Given that EEG decoding typically 
handles smaller datasets than those used in in conventional CNNs like 
ResNet and EfficientNet in the CV domain, our enhancement should 
focus on boosting the network’s parameter space. 

Separable convolution involves decomposing a convolution kernel 
into two smaller ones [41]. It consists of a depthwise convolution (cross- 
channels) and a pointwise convolution (1*1 convolution to combine the 
outputs of the depthwise convolution). Since the channel dimension is 
compressed to one from the previous process, the separable convolution 
becomes redundant. In order to reinforce the temporal features learning 
ability in each extracted feature map and also to enhance the network’s 
parameter space, we drop the separable convolution and add an extra 
Conv2D block with a kernel size of 16 and output filters as 16 (8 → 16: 
depthwise convolutions with a depth multiplier ratio of two). 

Step 3. Inverted bottleneck. 

Following the proved design recommendation of advanced CNN ar
chitectures [33,34,42], we modified the network blocks (five blocks 
based on previous modifications) to have an inverted bottleneck struc
ture with an expansion ratio of 4. The final output filters of CNN blocks 
are 8*32*64*32*8 (32 → 64: depthwise convolutions with a depth 
multiplier ratio of two). 

Step 4. Network dilation with fewer activation functions. 

This step focuses on enhancing the third part of the network and 
reinforcing its temporal feature learning ability. Instead of adding 
sequential NNs such as causal padding or TCN block, a different 
approach is taken to avoid further increasing the complexity. Dilations is 
added to both Conv2D blocks in the third part of the network, with 
values of 1*2 and 1*4, respectively, to capture overall temporal features. 
Finally, following the suggestions in [34], the activation functions be
tween blocks are reduced. Now, each part of the network uses a single 
ELU activation. 

All combined steps composite the EEGNeX. 

4.1. Closing remarks 

We propose a new architecture of the network design after making 
several micro adjustments. Instead of the successful changes mentioned 
above, some attempts that failed to improve performance include:  

1. Deeper networks: Simply stacking more convolution layers often 
results in convergence difficulties during the training phase and 
poorer performance [32]. EEG datasets are typically smaller 
compared to image dataset, so a deep network would encounter the 
overfitting issue earlier. In fact, we realized that focusing on proper 
information extraction process by incorporating domain knowledge 
is more beneficial for the model performance than adding extra 
layers. For example, EEGNet-8.2, compared to other models, has 
fewer trainable parameters than other benchmark models, but it has 
a dominant performance advantage.  

2. Fewer normalization layers: Although removing some normalization 
layers in modern CNN-based structures in the computer vision 
domain results in some improvements, this tactic was not effective in 
our domain, potentially due to the shallow network design.  

3. Reordering different parts/layers: We experimented with various 
combinations of parts’ orderings based on EEGNet’s structure and 
tried attaching additional CNN–/RNN-based layer variations to the 
model. No improvements were observed. Instead, extra dilation with 
padding on the third part of the model helps to capture the global/ 
temporal features efficiently.  

4. Attention block: We implemented a common attention structure: 
convolutional block attention module (CBAM) [43] between parts 
for channel and spatial attention. No improvements were found. 

Finally, we present a pure convolution-based network, EEGNeX- 
8,32, designed in line with modern CNN design practices. To conclude 
the design pillars of EEGNeX-8,32: we incorporate the local spatial and 
temporal information extraction ability by the DepthwiseConv2D, and 
enhances these features globally through the use of dilated Conv2D with 
padding. The network also utilizes an inverted bottleneck structure to 
improve its representation learning ability, while using fewer activation 
functions to avoid accuracy deterioration from multiple non-linear 
transformations. The results show that EEGNeX-8,32 achieves a signif
icant improvement in accuracy on the four datasets compared to 
EEGNet-8,2. The complete structure and parameter description of 
EEGNeX-8,32 is presented in Fig. 4 and Table 3. 

Table 3 
EEGNeX-8,32 architecture, where C = number of channels, T = number of timesteps, F1 = number of temporal filters (8), D = depth multiplier in DepthwiseConv2D 
(2), and N = number of classes, respectively.  

Block Layer # filters size Output Options 

1 Input   (C, T)   
Reshape   (1, C, T)   
Conv2D F1 (1, 32) (F1, C, T) use_bias = False, padding=’same’  
BatchNorm   (F1, C, T)  

2 Conv2D F1*4 (1, 32) (F1*4, C, T) use_bias = False, padding=’same’  
BatchNorm   (F1*4, C, T)   
Activation   (F1*4, C, T) ELU 

3 DepthwiseConv2D F1*4*D (C, 1) (F1*8, 1, T) depth_multiplier = D, use_bias = False, depthwise_constraint = max_norm(1.)  
BatchNorm   (F1*8, 1, T)   
Activation   (F1*8, 1, T) ELU  
AvgPool2D  (1, 4) (F1*8, 1, T/4)   
Dropout   (F1*8, 1, T/4) rate = 0.5 

4 Conv2D F1*4*D (1, 16) (F1*8, 1, T/4) use_bias = False, padding=’same’, dilation_rate=(1, 2)  
BatchNorm   (F1*8, 1, T/4)  

5 Conv2D F1 (1, 16) (F1, 1, T/4) use_bias = False, padding=’same’, dilation_rate=(1, 4)  
BatchNorm   (F1, 1, T/4)   
Activation   (F1, 1, T/4) ELU  
AvgPool2D  (1, 8) (F1, 1, T/32)   
Dropout   (F1, 1, T/32) rate = 0.5  
Flatten   (F1*T/32)  

Classifier Dense   N kernel_constraint = max_norm(0.25)  
Activation   N softmax  
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5. Results: Comparison with existing methods 

5.1. Model complexity 

A critical aspect of evaluating model performance or complexity 
often refers to the computational cost or time required to train the model 
and make predictions. It’s usually associated with the following two 
factors:  

• Number of parameters in a model also contributes to its complexity. 
More parameters can potentially increase the model’s capacity to fit 
the training data. However, more parameters also increase the risk of 
overfitting and demand more computational resources. The number 
of layers  

• Depth of the network in a model is one of the factors that contribute to 
its complexity. More layers allow the model to learn more complex 
representations, but it also makes the model more prone to over
fitting if not properly regularized. 

In the pursuit of evaluating both model performance and time 
complexity, we have taken into consideration various characteristics of 
the model architectures used for EEG signal decoding, including EEG
Net, EEG-Inception, and EEG-TCNet, as presented in Table 4. 

Compared to other models, EEGNeX-8,32 maintains a reasonable 
balance between the two aspects of complexity, which promotes effi
ciency and reduces the risk of overfitting. For instance, although EEG- 
Inception has a very high parametric complexity (~15 k), it also has a 
high depth (23 layers), which might increase the chances of overfitting 
and computational costs. On the other hand, despite having a low 
number of parameters (~2k), EEGNet-8,2 also has a lower depth (7 
layers), potentially compromising its performance. EEGNeX-8,32 stands 
as a middle ground with a medium number of parameters (~12 k) and 
high depth (10 layers). Through this balance of complexities, EEGNeX- 
8,32 aims to achieve optimal performance without excessive computa
tional and memory demands, paving the way for practical applications 
in the field. 

5.2. BCI Competition IV dataset 2a 

To validate the efficacy of EEGNeX, we first test its performance with 
similar advanced methods across the literature mentioned in Section 2 
with their shared evaluation dataset: BCI Competition IV dataset 2a 
(SMR). Three extra existing methods were selected for performance 
evaluation: EEG-Inception, EEG-TCNet, and EEG-ITNet. We evaluated 
within-subject by using the same data processing implementation, 
resampling rate (125 Hz), training strategy with the result described in 
[23]. Three EOG channels available in the dataset were excluded from 
our analysis. 

Table 5 illustrate the comparison results with the test of significance, 
and the confidence interval for all candidate models. EEGNeX shows 
accuracy advance with statistical significance over EEGNet, EEG- 
Inception, and EEG-TCNet. The result suggests that EEGNeX (78.81%) 
outperforms the other methods. It is also worth noting that the standard 
deviation values suggest that EEGNeX has a comparatively consistent 
performance. 

The confidence intervals (CI) presented in Table 4 demonstrate the 
range within which we can expect the true population parameter (in this 
case, classification accuracy) to fall 95% of the time if the experiment 

Table 4 
Comparison of the key factors of EEGNeX-8,32 with other end-to-end architectures.   

EEG-Inception 
[19] 

EEGNet-8,2 
[11] 

EEG-TCNet 
[21] 

EEG-ITNet 
[23] 

EEGNeX-8,32 

Deepness (# layers) High (23) Low (7) High (17) Very high (31) Medium (10) 
Parametric complexity Very high (~15 k) Low (~2k) Medium (~5k) Low (~3k) High (~12 k)  

Table 5 
Performance results of advanced algorithms for within-subject evaluation of BCI 
Competition IV Dataset 2a in terms of classification accuracy. Star * corresponds 
to significant at level of 0.05; 1CI: Confidence Interval.   

EEG- 
Inception 
[19] 

EEGNet- 
8,2 
[11] 

EEG- 
TCNet 
[21] 

EEG- 
ITNet 
[23] 

EEGNeX- 
8,32 

S1 77.43 81.94 82.29 84.38 86.25 
S2 54.51 56.94 64.24 62.85 60.71 
S3 82.99 90.62 88.89 89.93 93.38 
S4 72.22 67.01 60.76 69.10 70.27 
S5 73.26 72.57 72.92 74.31 67.14 
S6 64.24 58.68 62.50 57.64 70.63 
S7 82.64 76.04 83.33 88.54 88.84 
S8 77.78 81.25 79.51 83.68 85.89 
S9 76.36 78.12 76.39 80.21 86.16 
Average 73.50 73.69 74.54 76.74 78.81 
Std. 9.11 11.12 10.09 11.48 11.60 
CI*, 

95% 
[67.5, 79.5] [66.5, 

81.0] 
[67.9, 
81.1] 

[69.2, 
84.2] 

[71.2, 
86.4] 

p-value 0.011* 0.011* 0.015* 0.146 0.012*  

Fig. 5. Meta-analysis comparing EEGNeX against EEGNet (a) and the state-of-the-art algorithm pipeline on MOABB: TS-optSVM (b). The result is evaluated by 
within-recoding-session accuracy. The effect sizes shown are standardized mean differences, with p-values corresponding to the one-tailed Wilcoxon signed-rank test 
for the hypothesis given at the top of the plot and 95% interval denoted by the grey bar. Stars correspond to *** =p < 0.001, ** = p < 0.01, * = p < 0.05. The meta- 
effect is shown at the bottom of the plot. The overall trend shows that EEGNeX is on average better than EEGNet and TS-optSVM. 
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were to be repeated. These intervals help us gauge the precision and 
reliability of our model’s performance estimates. For instance, the 95% 
CI for EEGNet-8,2 indicates that if the experiment were repeated mul
tiple times, we could expect the true accuracy to fall within the range of 
66.5 to 81.0, 95% of the time. Similarly, for EEGNeX-8,32, the range 
would be 71.2 to 86.4. 

The observed p-values in the table further confirm the statistical 
significance of the accuracy improvements exhibited by EEGNeX. A p- 
value of<0.05 (the typical threshold for statistical significance) in
dicates that the observed differences in performance are unlikely to have 
occurred by chance, further validating the effectiveness of EEGNeX. 

5.3. Mother of all BCI Benchmarks 

To exhaustively examine the efficacy of EEGNeX in a broader 
context, 11 open access, multi-classes MI datasets in MOABB [15] were 
applied. We benchmark EEGNeX and EEGNet on MOABB by comparing 
them to three other built-in common non-NN algorithm pipelines in 
BCIs. These algorithms are:  

• CSP + LDA: where trail covariances estimated via maximum- 
likelihood with unregularized common spatial patterns (CSP). Fea
tures were log variance of the filters belonging to the six most 
diverging eigenvalues and then classified with linear discriminant 
analysis (LDA). 

• TS + optSVM: where trial covariances estimated via oracle approx
imating shrinkage estimator (OAS) then projected into the Rieman
nian tangent space to obtain features and classified with a linear SVM 
with identical grid search.  

• AM + optSVM: where features are the log-variance in each channel 
and then classified with a linear SVM with grid search. 

The evaluation was performed within-subject to minimize the impact 

of non-stationarity. It should be noted that some dataset collections 
within MOABB have small sample sets of data within-session, which 
increases the training difficulties of NN algorithms. The accuracy was 
evaluated using 5-fold cross-validation to validate the general infor
mation extraction and representation performance. It is worth noting 
that there is a “No-free-lunch” theorem [44], or “horses for courses” 
phenomenon exists in the algorithm selection problem, which states that 
no single algorithm can be deemed the best for all problems. Fig. 5 
presents the meta-analysis of the performance comparison between 
EEGNeX, EEGNet, and TS + optSVM, which is the state-of-the-art al
gorithm pipeline on MOABB. Across diverse datasets, the result validates 
the performance novelty of EEGNeX: it competes favorably with EEGNet 
methods (p < 0.001, Wilcoxon tests) and outperforms TS + optSVM (p 
< 0.05). 

Fig. 6 summarizes the ranking of algorithms in performance with 
statistics generated across all 11 datasets in MOABB. The result un
derlines that EEGNeX generalized well across all datasets and out
performed other algorithm pipelines. We concluded that the general 
structure modifications to EEGNeX (increased layer depth, inverted 
bottleneck, dilation) and micro adjustment are universally valid for 
accuracy improvement in EEG-based BCI classification tasks. 

In the end, we open-sourced code in Keras for easy, out-of-box 
reproduction to use in different research sources (https://github.com/ 
chenxiachan/EEGNeX). All models are coded in the same implementa
tion format with input in the shape of (trials * channels * timesteps), and 
one-hot-encoded output. We designed an experiment to run all models 
on the dataset for ten rounds with random seeds to record their accuracy 
performances for statistical tests. 

6. Discussion 

The thought in our brain has been using mainly language to interact 
with the world for a long period. Just as Ludwig Josef Johann Wittgenstein 
[45] described: 

“The limits of my language mean the limits of my world.” 

Brain-computer interface (BCI) research opens up a direct pathway 
for decoding brain activity, offering immense potential for creating new 
patterns of human–computer interaction (HCI). By the generalization 
power of NNs, we foresee that the effort invested in interpreting brain 
activities would benefit a broad branch of domains, from information & 
communications technology to medical, from social science to design, 
and even revolutionize how we percept and understand reality. Take the 
design domain as an example; new BCI patterns would efficiently assist 
designers in expressing and interacting with the design work: their 
personal preferences, less expressible feelings, and subconscious per
ceptions can be captured, represented, and transferred more seamlessly 
via the brain’s electrical signals without explicitly formalizing in lan
guages or actions. 

Starting with the EEG classification, this study aims to reduce the gap 
between the BCI domain research and efficient NN implementation. It 
offers a testbed for different network architectures comparison to 
encourage more interdisciplinary research participation. From this 

Fig. 6. Ranking of algorithms in performance across all datasets. As all p-values 
are single-sided for clarity. The values correspond to the standardized mean 
difference of the algorithm in the y-axis minus that in the x-axis and the 
associated p-value. The comparison shows the meta-effect in case that the 
method on the vertical axis significantly outperforms the method on the hori
zontal axis, according to the one-tailed Wilcoxon signed-rank test. 

Table 6 
The architecture of GRU and LSTM; They both share the same general structure but with different RNN layer.  

Single_GRU Single_LSTM   

Layer Layer # units size Options 

Input Input  /  
GRU LSTM 100 / return_sequences = True, kernel_regularizer = l2(0.0001) 
GRU LSTM 100 / return_sequences = True, kernel_regularizer = l2(0.0001) 
GRU LSTM 100 / kernel_regularizer = l2(0.0001) 
Dropout Dropout  / rate = 0.5 
Dense Dense 100 / activation=’elu’ 
Dense Dense  / activation=’softmax’  
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perspective, the construction of our open-source testbed remains 
primitive. 

Our investigation focused on designing NNs effectively for decoding 
EEG signals. Despite basing our general EEGNeX model on established 
literature and past experiences, we noticed that different NN layers 

correspond to different numbers of trainable parameters during the 
benchmarking process. The number of trainable parameters in a NN 
indicates its capacity, i.e., the amount of information it can retain and 
employ to make predictions. However, deeper networks do not neces
sarily imply larger model capacity. The benchmarking results confirm 
that the efficiency of information extraction by the NN surpasses the 
importance of merely expanding model capacity. Selecting the right 
number of trainable parameters for a task involves a balance: the need 
for a high-capacity model must be weighed against the risk of over
fitting. This balance can be influenced by factors such as the size and 
complexity of the input data, the availability of training examples, and 
the computational resources at the disposal of model training. The 
benchmarking of EEGNeX against various architectures revealed crucial 
insights. The model’s efficiency in information extraction surpasses the 
importance of merely expanding the model’s capacity. This emphasizes 
the judicious selection of trainable parameters to balance the need for a 
high-capacity model against the risk of overfitting. 

With respect to confidence intervals, they provide a measure of un
certainty around our mean accuracy estimates. These intervals under
line the inherent variability in model performance across subjects and 
suggest a potential value in individualized model tuning. It’s worth 
noting that the broad range of this confidence interval may be due to the 
relatively small sample size and the inherent variability of EEG signals. 
Future work with larger sample sizes may lead to narrower confidence 
intervals, thus improving the precision of the estimate. Although the 
Leave-One-Subject-Out (LOSO) cross-validation method was not utilized 

Table 7 
The architecture of 1D CNN models; They share the same general structure but with different layer parameter options.     

1D_CNN 1D_CNN_Dilated 1D_CNN_Causal 1D_CNN_CausalDilated 

Layer # filters size Options Options Options Options 

Input       
Conv1D 64 3 / / padding=’causal’ padding=’causal’ 
BatchNorm       
Activation   elu  

Conv1D 64 3 / dilation_rate = 2 padding=’causal’ padding=’causal’, dilation_rate = 2 
BatchNorm    
Activation   elu 
Conv1D 64 3 / / padding=’causal’ padding=’causal’ 
BatchNorm       
Activation   elu 
Dropout   rate = 0.5 
MaxPooling1D   pool_size = 2  

Flatten       
Dense 100  activation=’elu’ 
Dense   activation=’softmax’   

Table 8 
The architecture of 2D CNN models; They share the same general structure but 
with different layer parameter setting options.     

2D_CNN 2D_CNN_Dilated 

Layer # filters size Options Options 

Input     
Conv2D 64 (1, 3)   
BatchNorm     
Activation   elu 
Conv2D 64 (1, 3) / dilation_rate = 2 
BatchNorm     
Activation   elu 
Conv2D 64 (1, 3)   
BatchNorm     
Activation   elu 
Dropout   rate = 0.5 
AvgPooling2D   pool_size = 2, padding=’same’ 
Flatten     
Dense 100  activation=’elu’ 
Dense   activation=’softmax’  

Table 9 
The architecture of Depthwise and Separable 2D CNN.  

2D_CNN_Depthwise 2D_CNN_Separable    

Layer Layer # filters size Options 

Input Input    
DepthwiseConv2D SeparableConv2D 64 (1, 3)  
BatchNorm BatchNorm    
Activation Activation   elu 
SeparableConv2D SeparableConv2D 64 (1, 3)  
BatchNorm BatchNorm    
Activation Activation   elu 
SeparableConv2D SeparableConv2D 64 (1, 3)  
BatchNorm BatchNorm    
Activation Activation   elu 
Dropout Dropout   rate = 0.5 
AvgPooling2D AvgPooling2D   pool_size = 2, padding=’same’ 
Flatten Flatten    
Dense Dense 100  activation=’elu’ 
Dense Dense   activation=’softmax’  
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in this study, it could be an area for future exploration in cross-subject 
evaluation to gauge the performance of these models in different 
settings. 

The limitation of this study is: The intention of designing this 
benchmark is to include diverse NN architectures in the research of 
reliable EEG signal decoding paths. We referred to ConvNeXt to find the 
path shortcut for improved efficiency by the convolution inductive bias. 
Although the original ConvNeXt claims the performance advance in the 
CV domain, image classification tasks than Transformer, the contribu
tion of different mechanisms in four pillars mentioned in Fig. 2 is still 
worth investigating in the BCI domain. 

Aside from the performance advantages of CNN-based methods, we 
noted from our benchmark results that hybrid-model approaches yield 
accuracy improvements over single architectures, hinting at a more 
profound question of EEG representation. The rationale is that BCI signal 
data fundamentally combines the sequential format of NLP and the 
multi-channels from image data in computer vision. We have noticed 
various research attempts to utilize BCI data across both branches 
[6,12]. In this context, the hybrid-model approach by deeply combining 
CNN and RNN architecture, the decent design of acquiring long-range 
global features in sequence by self-attention in Transformer, dimen
sion reduction by encoder-decoder, and more NN techniques own po
tential for further improvement. Furthermore, our study and proposed 
EEGNeX aim for a method that is generalizable for EEG decoding 
without explicit feature extraction. A domain-knowledge embedding 
into the network structure, objective function, or feature engineering 
owns potential for further performance enhancement in a specific 
dataset. 

In terms of generalization evaluation, future research could test the 
decoding performance of EEGNeX using time-series data from other 
imaging modalities such as magnetoencephalography (MEG) and func
tional near-infrared spectroscopy (fNIRS). For the utility, it is worth 
noting that although the model is developed to address the challenges of 
EEG tasks, the benchmark methods and the improvement conducted in 
the EEGNeX architecture rarely incorporate domain-specific feature 
engineering knowledge. Broader test scenarios within the scope of bio
logical signal decoding in BCI topics could also benefit from this study. 

7. Conclusion 

In this study, we conducted experiments on large-scale neural net
works (NNs) to evaluate their performance in EEG-based brain-com
puter interface (BCI) classification tasks. This deep dive allowed us to 
delineate clear patterns regarding the efficacy and representation ca
pabilities of different NN structures in EEG decoding. Our findings 
identified four pivotal pillars essential for architecting efficient neural 
networks tailored for EEG classification. 

With these insights, we introduced EEGNeX – a pioneering, 
convolution-centric network model that leverages breakthroughs from 
contemporary neural network representation research. Beyond theo
retical propositions, we rigorously evaluated EEGNeX across a spectrum 
of EEG classification challenges, affirming its consistent and universal 
effectiveness. Crucially, EEGNeX’s standout performance was not teth
ered to any context-specific design paradigms, endowing it with an 
adaptable architecture. This adaptability empowers EEGNeX to syner
gize seamlessly with knowledge-driven and domain-centric feature en
gineering, permitting tailored applications across varied scenarios. 

Through this study and the accompanying benchmarks, our objective 
has been to simplify and streamline the deployment of advanced neural 
models within the BCI research domain. We’re optimistic that our en
deavors will not only facilitate more straightforward model imple
mentation but also catalyze future representation-centric explorations in 
this sphere. 
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Table 10 
The architecture of hybrid-models; They both share the same general structure but with different RNN layer.  

CNN_GRU1D CNN_LSTM1D CNN_GRU2D CNN_LSTM2D    

Layer Layer Layer Layer # filters size Options 

Input Input Input Input   TimeDistributed 
Conv1D Conv1D Conv2D Conv2D 64 3/(1, 3) TimeDistributed 

BatchNorm     

Activation    elu 

Conv1D Conv1D Conv2D Conv2D 64 3/(1, 3) TimeDistributed 
BatchNorm    
Activation    elu 

Conv1D Conv1D Conv2D Conv2D 64 3/(1, 3) TimeDistributed 
BatchNorm     

Activation    elu 

Dropout    TimeDistributed, rate = 0.5 

MaxPooling1D AvgPooling2D   TimeDistributed, pool_size = 2 
Flatten    TimeDistributed 

GRU LSTM GRU LSTM 480  kernel_regularizer = l2(0.0001) 
Dropout    rate = 0.5 

Dense  100  activation=’elu’ 

Dense    activation=’softmax’  
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Appendix  

1. Benchmark model structures. 

The benchmark model was designed with the following 
considerations:  

1. Three-Block Architecture: All basic models were constructed in a 
three-block manner to be comparable with EEGNet, a model with a 
three-block architecture with proven performance in EEG-based 
tasks. This three-block architecture was chosen because it would 
be suitable for reflecting the model performance in EEG-based tasks 
without worrying about the model capacity.  

2. Common Macro Design: All models followed a common macro 
design based on a large-scale literature review of NN. The design 
includes the following elements:  

• Input layer: Each NN model starts with an input layer to receive the 
EEG data.  

• Hidden layers: The hidden layers are designed to extract features 
from the EEG data. They consist of a certain type of network layer, 
batch normalization, and activation layers. In CNN-based models, a 
pooling layer is also included. Some layer variations are also made 
for comparison.  

• Output layer: The hidden layers are followed by a fully connected 
dense layer with 100 neurons before the output. A dropout layer is 
attached to enhance the model’s robustness.  

3. Hybrid Model: A hybrid model was designed by attaching an RNN 
layer after the CNN blocks to test the model performance by 
combining spatial–temporal information extraction design. This 
design aims to capture both spatial and temporal information from 
the EEG data to improve the model’s performance in EEG-based 
tasks. 

In summary, the benchmark model was designed to be comparable 
with previous research and reflect the performance of different NN 
models in EEG-based tasks. The design followed a common macro design 
based on a large-scale literature review and incorporated a hybrid model 
to test the performance of combining spatial–temporal information 
extraction (see Tables 6–10).  

2. Description of datasets. 
Event-related potential (ERP) – MindBigData. 

A single subject, 10-class ERP dataset [46]. This open database 
contains four different devices, 1,207,293 brain signals of 2 s long each. 
The signal records the imagine of presented digit images after exposing a 
subject to the visual stimulus of the MNIST dataset (from 0 to 9, − 1 
represents noise), resulting in similar phase synchrony among multiple 
channels for all classes. In this study, Emotive EPOC device data were 
selected. The raw EEG signals were recorded at a sample rate of 128 Hz; 
there are around 6500 trials for each digit image, with each trial con
taining 256 timesteps for 14 channels. We conducted a simple and 
common data preprocessing strategy, including: Noise events removal 
(-1); A combination of Butterworth lowpass filter (with a cutoff fre
quency of 63 Hz) and a notch filter at 50 Hz is applied on all trials; The 

first 32 timesteps (250 ms) for each trial are trimmed to avoid noises 
caused by sensor power on. 

Motor Imagery (MI) - OpenMBI Data. 

A 2-class MI data from Korea University EEG dataset [47]. The 
dataset contains 2-class EEG data from 54 healthy subjects with MI of 
left/right-hand classes in a total of 100 trials for each session in the 
length of 4 s [47]. The original data is recorded at 1000 Hz using 62 
electrodes. As suggested by the original work, we selected 20 channels 
(FC-5/3/1/2/4/6, C-5/3/1/z/2/4/6, and CP-5/3/1/z/2/4/6) for the 
classification task. The EEG data is filtered with a notch of 1–40 Hz and 
down-sampled at 128 Hz. 

Sensory Motor Rhythm (SMR) - BCIC-IV-2A Data. 

A 4-class SMR data from BCI Competition IV Dataset 2A [48]. This 
dataset consists of 22 EEG channels and 3 EOG channels from 9 subjects 
with the task of 4-class motor imagery (left hand, right hand, feet, 
tongue) classification. The sampling rate is 250 Hz with 0.5–100 Hz 
notch filtered. In our analysis, we used all EEG channel signals with the 
entire trial. 

Feedback Error-Related Negativity (ERN) - BCI challenge Data. 

A 2-class ERP data from BCI Challenge hosted by Kaggle [49]. 
Detecting the ERN feedback helps to improve the performance of the 
P300 speller in the application. The dataset is used in the “BCI Chal
lenge” to determine whether the P300 feedback is correct (2-class 
classification task), hosted by Kaggle [49], consists of 26 healthy par
ticipants in 56 passive Ag/AgCl EEG sensors. The data is originally 
recorded at 600 Hz, we used a 1–40 Hz notch filter with 128 Hz down- 
sampling for analysis. 
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